Chapter 4 Making Sense of the Universe: **Understanding Motion, Energy, and Gravity 4.1 Describing Motion** Our goals for learning: • How do we describe motion? • How is mass different from weight? How do we describe motion? Precise definitions to describe motion: • Speed: Rate at which object moves speed = $\frac{\text{distance}}{\text{time}}$ (units of $\frac{\text{m}}{\text{s}}$) example: speed of 10 m/s • Velocity: Speed and direction example: 10 m/s, due east • Acceleration: Any change in velocity units of speed/time (m/s²)

The Acceleration of Gravity

- All falling objects accelerate at the same rate (not counting friction of air resistance).
- On Earth, g≈ 10 m/s²: speed increases 10 m/s with each second of falling.

The Acceleration of G	avity	(g)
-----------------------	-------	-----

 Galileo showed that g is the same for all falling objects, regardless of their mass.

Momentum and Force

- Momentum = mass × velocity
- A **net force** changes momentum, which generally means an acceleration (change in velocity)
- Rotational momentum of a spinning or orbiting object is known as **angular momentum**

_			
_			
_			
_			
_			
_			
_			
_			
_			
_			

How is mass different from weight?

- Mass the amount of matter in an object
- Weight the force that acts upon an object

You are weightless in free-fall!

Why are astronauts weightless in space?

- There is gravity in space
- Weightlessness is due to a constant state of free-fall

- How do we describe motion?
 - Speed = distance / time
 - Speed & direction => velocity
 - Change in velocity => acceleration
 - **Momentum** = mass x velocity
 - Force causes change in momentum, producing acceleration

What have we learned? • How is mass different from weight? • Mass = quantity of matter • Weight = force acting on mass • Objects are weightless in free-fall 4.2 Newton's Laws of Motion Our goals for learning: • How did Newton change our view of the universe? • What are Newton's three laws of motion? How did Newton change our view of the universe? · Realized the same physical laws that operate on Earth also operate in the heavens ⇒ one *universe* • Discovered laws of motion and gravity Much more: Experiments with light; first reflecting telescope, calculus...

What are Newton's three laws of motion? Newton's first law of motion: An object moves at constant velocity unless a net force acts to change its speed or direction.	
	1
Newton's second law of motion	
Force = mass × acceleration	
Newton's third law of motion:	
For every force, there is always an <i>equal and</i>	
opposite reaction force.	

Thought Question:

A compact car and a Mack truck have a head-on collision. Are the following true or false?

- The force of the car on the truck is equal and opposite to the force of the truck on the car.
- The momentum transferred from the truck to the car is equal and opposite to the momentum transferred from the car to the truck.
- 3. The *change of velocity* of the car is the same as the change of velocity of the truck.

Thought Question:

A compact car and a Mack truck have a head-on collision. Are the following true or false?

- The force of the car on the truck is equal and opposite to the force of the truck on the car. T
- 2. The *momentum* transferred from the truck to the car is equal and opposite to the momentum transferred from the car to the truck. **T**
- 3. The *change of velocity* of the car is the same as the change of velocity of the truck. **F**

- How did Newton change our view of the universe?
 - He discovered laws of motion & gravitation
 - He realized these same laws of physics were identical in the universe and on Earth
- What are Newton's Three Laws of Motion?
 - 1. Object moves at constant velocity if no net force is acting
 - 2. Force = mass × acceleration
 - 3. For every force there is an equal and opposite reaction force

4.3 Conservation Laws in Astronomy:

Our goals for learning:

- Why do objects move at constant velocity if no force acts on them?
- What keeps a planet rotating and orbiting the Sun?
- Where do objects get their energy?

Conservation of Momentum

- The total momentum of interacting objects cannot change unless an external force is acting on them
- Interacting objects exchange momentum through equal and opposite forces

Conservation of Angular Momentum

angular momentum = mass x velocity x radius

- The angular momentum of an object cannot change unless an external twisting force (torque) is acting on it
- Earth experiences no twisting force as it orbits the Sun, so its rotation and orbit will continue indefinitely

•		
•		
•		
•		
•		
•		
•		

Where do objects get their energy?

- Energy makes matter move.
- Energy is conserved, but it can:
 - Transfer from one object to another
 - Change in form

Basic Types of Energy

- Kinetic (motion)
- Radiative (light)
- Stored or potential

Energy can change type but cannot be destroyed.

Thermal Energy: the collective kinetic energy of many particles (for example, in a rock, in air, in water)

Thermal energy is related to temperature but it is NOT the same.

Temperature is the *average* kinetic energy of the many particles in a substance.

•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		

Gravitational Potential Energy	
On Earth, depends on: object's mass (m)	
 strength of gravity (g) distance object could potentially fall 	
	-
Gravitational Potential Energy	
In space, an object or gas cloud has more gravitational energy when it is spread out than when it contracts.	
 ⇒A contracting cloud converts gravitational potential energy to thermal energy. 	
	1
Mass-Energy	
Mass itself is a form of potential energy	
$E=mc^2$ • A small amount of mass can release a	
great deal of energy • Concentrated energy can spontaneously turn into particles (for	
example, in particle accelerators)	

Conservation of Energy

- Energy can be neither created nor destroyed.
- It can change form or be exchanged between objects.
- The total energy content of the Universe was determined in the Big Bang and remains the same today.

What have we learned?

- Why do objects move at constant velocity if no force acts on them?
 - Conservation of momentum
- What keeps a planet rotating and orbiting the Sun?
 - Conservation of angular momentum
- Where do objects get their energy?
 - Conservation of energy: energy cannot be created or destroyed but only transformed from one type to another.
 - Energy comes in three basic types: kinetic, potential, radiative.

4.4 The Universal Law of Gravitation

Our goals for learning:

- What determines the strength of gravity?
- How does Newton's law of gravity extend Kepler's laws?

·	
-	

What determines the strength of gravity? The Universal Law of Gravitation: 1. Every mass attracts every other mass. 2. Attraction is *directly* proportional to the product of their masses. 3. Attraction is *inversely* proportional to the *square* of the distance between their centers. How does Newton's law of gravity extend Kepler's laws? • Kepler's first two laws apply to all orbiting objects, not just planets • Ellipses are not the only orbital paths. Orbits can be: • Bound (ellipses) • Unbound • Parabola Hyperbola **Center of Mass**

 Because of momentum conservation, orbiting objects orbit around their center of mass

Newton and Kepler's Third Law

His laws of gravity and motion showed that the relationship between the *orbital period* and *average orbital distance* of a system tells us the *total mass* of the system.

Examples:

- Earth's orbital period (1 year) and average distance (1 AU) tell us the Sun's mass.
- Orbital period and distance of a satellite from Earth tell us Earth's mass.
- Orbital period and distance of a moon of Jupiter tell us Jupiter's mass.

Newton's Version of Kepler's Third Law

$$p^2 = \frac{4\pi^2}{G(M_1 + M_2)} a^3$$
 OR $M_1 + M_2 = \frac{4\pi^2}{G} \frac{a^3}{p^2}$

p = orbital period a = average orbital distance (between centers)

 $(M_1 + M_2) = \text{sum of object masses}$

- What determines the strength of gravity?
 - Directly proportional to the product of the masses (M x m)
 - *Inversely* proportional to the *square* of the separation
- How does Newton's law of gravity allow us to extend Kepler's laws?
 - Applies to other objects, not just planets.
 - Includes unbound orbit shapes: parabola, hyperbola
 - Can be used to measure mass of orbiting systems.

4.5 Orbits, Tides, and the Acceleration of Gravity

Our goals for learning:

- How do gravity and energy together allow us to understand orbits?
- How does gravity cause tides?
- Why do all objects fall at the same rate?

How do gravity and energy together allow us to understand orbits?

More gravitational energy; Less kinetic energy

 Total orbital energy (gravitational + kinetic) stays constant if there is no external force

Less gravitational energy; More kinetic energy Orbits cannot change spontaneously.

Total orbital energy stays constant

Changing an Orbit

- ⇒ So what can make an object gain or lose orbital energy?
- Friction or atmospheric drag
- A gravitational encounter.

Escape Velocity

- If an object gains enough orbital energy, it may escape (change from a bound to unbound orbit)
- Escape velocity from Earth ≈ 11 km/s from sea level (about 40,000 km/hr)
- Escape and orbital velocities don't depend on the mass

How does gravity cause tides?

- Moon's gravity pulls harder on near side of Earth than on far side
- Difference in Moon's gravitational pull stretches Earth

- How do gravity and energy together allow us to understand orbits?
 - Change in total energy is needed to change orbit
 - Add enough energy (escape velocity) and object leaves
- How does gravity cause tides?
 - Moon's gravity stretches Earth and its oceans.
- Why do all objects fall at the same rate?
 - Mass of object in Newton's second law exactly cancels mass in law of gravitation.

 	 	_