PowerPoint Lectures to accompany Physical Science, 8e

Chapter 6 Electricity

	New Symbols for this Chapter				
<i>q-</i> Cr <i>I-</i> Cu <i>V-</i> El <i>R-</i> Re Ω-O	harge rrent ectrical Potential esistance hms	$F = k \frac{q_1 q_2}{r^2}$ $I = \frac{q}{t}$ $V = IR$ $P = IV$ $R_{\text{total}} = R_1 + R_2 + R_3$ $\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$			

Core Concept

Electric and magnetic fields interact and can produce forces.

Electromagnetism

The early Greek Philosophers knew that if you rubbed a piece of amber, it would attract bits of straw.

The Greeks also observed that some naturally occurring stones would attract Iron.

	_			
The Electric Force				
	Since all matter has mass there is an attractive force between matter called <u>The</u> <u>Gravitational</u> <u>Force.</u>			
Some mater also has a property called charge and the force between matter due to this property is called <u>The Electric</u> Force.				

Electric Charge		
	Charge is found in Protons and Electrons.	
	Electrons have Negative Charge Protons have Positive Charge	
Overall matter usually has the same n electrons which means equal amounts charge.	umber of protons and s of positive and negative	

Io	ns
Neutral Atoms	
	Negative Ion
	Positive Ion
When an atom gains or loses a	an electron it becomes an Ion .

(+) and (-) Charge

The "Positive" and "Negative" labels and signs for electric charge were chosen arbitrarily by Benjamin Franklin.

Units of Charge

Charge is measured in <u>Coulombs</u> (<u>C</u>). The coulomb is like the kilogram is for mass.

Conductors and Insulators

In some materials, such as metals, some of the negative charge can move rather freely. We call such materials <u>Conductors</u>.

In other materials like plastic, none of the charge can move freely. We call these materials <u>Nonconductors</u> or <u>Insulators</u>.

Semi-Conductors

<u>Semi-conductors</u>, such as Silicon and Germanium, are materials that are intermediate between conductors and insulators.

Attractive or Repulsive				
If the charges have different signs then th force will be attractive				
If the charges have same sign then the force will be repulsive				
In both cases the objects will move along the straight line connecting them.				

Action at a Distance

Some forces we can see how the forces is being applied. This is called a <u>Contact</u> <u>Force</u>.

Some forces act over large distances and the objects do not have to be in contact for the force to act. To understand these forces we use the idea of a **Field**.

The Electric Field	of ±Charge
	e. e. e. ge
E p (, it	Each Charged object produces an electric field <i>E</i>) in all the space around t.
The direction of an electric field is alv	ways away from positive
charges and towards negative charge	es.

Electric Potential

- Scalar field associated with potential energy
- Units = volts (V)
 Polated to work invol
- Related to work involved in positioning charges
- Potential difference important in producing forces and moving charges
- Analogous to moving masses in gravitational fields

Electric Current

Earlier - electrostatics

• Charges more or less fixed in place Now - charge allowed to move

- Electric current
 - Flow of charge
 - Reason for charge flow potential (voltage) differences

• Electric circuits

- Structures designed to localize and utilize currents

Electric Current

If we insert a battery into a loop of wire then the wire is no longer at a single potential and charges will start moving from the high potential to the low potential.

The Electric Circuit

Structure ٠

- Voltage source Energy input
- Necessary for continuing flow
- Circuit elements
- Energy used up as heat, light, work, ...
 Current flow convention: from high potential to low potential through the external circuit •
- Water/pump analogy

The Nature of Current

- Historically nature of "electrical fluid" unknown
- Current thought to be a flow of positive charge
- Reality more complicated, depending on material
- Opposite correct in metals, current = electron flow

Current Mechanisms

Liquids and gases

Both positive and negative charges move, in opposite directions ٠

Metals

- Delocalized electrons free to move throughout metal
- "Electron gas" ٠
- Drift velocity of electrons <u>slow</u>
- Electric field moves through at nearly light speed

More Current Details

- Current = charge per unit time Units = ampere, amps (A)
 - Direct current (DC) - Charges move in one direction
 - Electronic devices, batteries, solar cells
 - Alternating current (AC)
 - Charge motion oscillatory
 No net current flow

Electrical Resistance

- Loss of electron current energy
- Two sources
 - Collisions with other electrons in current
 - Collisions with other charges in material
- Ohm's law

Example 1 (Parallel Exercise Group B #6)

1) There is a current of 0.83A through a light bulb in a 120V circuit. What is the resistance of this light bulb?

Units of Resistance			
The SI unit for resistance is the Volt per Ampere. This combination occurs so often that we give it a special name the Ohm (Ω).			
$1 Ohm = 1 \Omega = 1 \frac{V}{A}$			
A conductor whose function in a circuit is to provide a specified resistance is called a Resistor .			
We represent a resistor in a circuit diagram with the symbol			

Example 2 (Parallel Exercise Group B #11)

1) An electrical motor draws a current of 11.5 A in a 240 V circuit. What is the power of this motor in Watts?

Magnetism

Earliest ideas

- Associated with naturally occurring magnetic materials (lodestone, magnetite)
- Characterized by "poles" "north seeking" and "south seeking"
- Other magnetic materials iron, cobalt, nickel (ferromagnetic)
- Modern view
- Associated with magnetic fields
- Field lines go from north to south poles

Magnetic Poles and Fields

- Magnetic fields and poles inseparable
- Poles always come in north/south pairs
- Field lines go from north pole to south pole
- Like magnetic poles repel; unlike poles attract

Sources of Magnetic Fields

- Microscopic fields
 - Intrinsic spins of subatomic particles (electrons, protons, ...)
 - Orbital motions of electrons in atoms
- Macroscopic fields
 - Permanent magnets
 - Earth's magnetic field
 - Electric currents
 - Electromagnets

Permanent Magnets

- Ferromagnetic materials Atomic magnetic moment
 Electron/proton intrinsic
 - moments

 Electron orbital motion
 - Clusters of atomic moments align in domains Not magnetized - domains randomly oriented Magnetized - domains aligned

Earth's Magnetic Field

- Originates deep beneath the surface from currents in molten core
- Magnetic "north" pole = south pole of Earth's magnetic field
- Magnetic declination = offset
- Direction of field periodically
 - reverses – Deposits of magnetized
 - material – Last reversal - 780,000 yrs. ago

Electric Currents and Magnetism

 Moving charges (currents) produce magnetic fields

Electromagnets

- Structure
 - Ferromagnetic core
 - Current carrying wire wrapped around core
- Field enhanced by the combination
- Can be turned on/off
- Used in many applications: meters, switches, speakers, motors...

Electric Motors

- Convert electrical energy to mechanical energy
- Two working parts
 - Field magnet stationaryArmature moveable
 - electromagnet
- Armature rotates by
 interactions with field magnet
 - Commutator and brushes reverse current to maintain rotation

Electromagnetic Induction

Causes:

- Relative motion between magnetic fields and conductors •
- Changing magnetic fields near conductors
- Effect:
- Induced voltages and currents
- Induced voltage depends on:
 Number of loops
 Strength of magnetic field
 Rate of magnetic field change

AC Generators

Structure

- Axle with main wire loops in a magnetic field
- Axle turned mechanically to produce electrical energy AC generator
- "Alternating current"
- Sign of current and voltage alternate

Circuit Connections

- Alternating current – Practically all
 - generated electricity – Transmitted over
 - Transmitted over high voltage lines and stepped down for use in homes and industry
- Direct current - Used in automobiles, cell phones, mp3
 - players, laptops, ... – Moveable and
 - portable applications – Main current source
 - is chemical batteries

The general energy transmission rule: Transmit at the highest possible voltage and the lowest possible current.

So we need a device to raise the voltage for transmission and then lower for household use.

The transformer is such a device.

The Ideal Transformer

The ideal transformer consists of two coils, with different numbers of turns, wound around an Iron core.

The primary winding, of N_{ρ} turns, is connected to an alternating-current generator with an alternating current.

The secondary winding, of N_s turns, is connected to a device which will use the electric energy.

Parallel Circuits				
		The other w circuit elem <u>Parallel</u> .	vay to connect ents is called in	
		Circuit ele parallel al following	ments in I have the properties.	
 They all have a different current going through them which will depend inversely on their resistance. The same voltage across them. 				
	$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_1}$	$\frac{1}{R_2} + \frac{1}{R_3}$		

Household Circuit Safety

- Potential difference from two wires per device

 Energized load carrier
 Grounded or neutral wire
- Three-pronged plug
 - Provides another grounding wire
- Other devices: polarized plugs, ground-fault interrupter (GFI)