

Core Concept

Light is electromagnetic radiation– energy – that interacts with matter.

New Symbols for this Chapter		
<i>c</i> -Speed of Light <i>n</i> -Index of refraction <i>h</i> -Planck's Constant	$\theta_i = \theta_f$ $n = \frac{c}{v}$ $c = \lambda f$ $E = hf$	

Structure

- · Regenerating cooscillation of electric and magnetic fields
- · Transverse waves
- Electric, magnetic and velocity vectors mutually • perpendicular
- Electromagnetic spectrum

Sources of Light

- Matter constantly emits and absorbs radiation
- Emission mechanism Accelerated, oscillating charges produce electromagnetic waves
- Absorption mechanism
 - Oscillating electromagnetic waves accelerate charges within matter
- · Different accelerations lead to different frequencies
- Luminous Producing light
 - The Sun versus the nonluminous Moon
- Incandescent
 - Glowing with visible light from high temperatures
 - Examples: flames, incandescent light bulbs

Blackbody/Thermal Radiation

Blackbody

- Ideal absorber/emitter of light
- Radiation originates from oscillation of near-surface charges
- Increasing temperature
 - Amount of radiation increases
 - Peak in emission spectrum moves to higher frequency

Spectrum of the Sun

Properties of Light – Two Models

Light ray model

- Particle-like view
- Photons travel in straight lines
- Applications
 - Mirrors
 - Prisms
 - Lenses

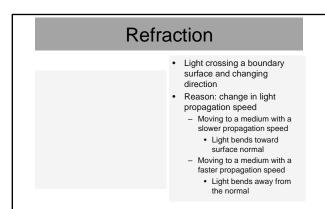
Wave model

- Traces motions of wave fronts
- Best explains
 - Interference
 - Diffraction
 - Polarization

Light Interacts with Matter

- Interaction begins at surface and depends on
 - Smoothness of surfaceNature of the material
 - Angle of incidence
- Possible interactions
 - Absorption and
 - transmission - Reflection
 - Refraction

Diffuse Reflection


- Most common visibility mechanism
- Each point reflects light in all directions
- Bundles of light from object are seen by the eye
- Colors result from selective wavelength reflection/absorption

Reflection Details

- Angles measured with respect to the "surface normal"
 - Line perpendicular to the surface
- · Law of reflection

Image Formation

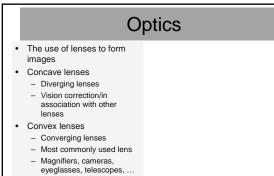
- Real image
 - Can be viewed or displayed at its location
 - Example movie image on a screen
- Virtual image
 - Appears to come from a location where it is not directly visible
 - Examples: plane mirror, <u>convex</u> mirror, <u>concave</u> mirror

Refraction, cont.

- Mirages
- Critical angle
 - Light refracted parallel to surface
 - No light passes through surface - "total internal reflection"
 - Applications fiber
 - optics, gemstone brilliance

Refraction, cont.

Index of refraction
 A measure of light


speed

Substance	Index of refraction	Light speed
Air	Approx. 1	~C
Water	1.333	0.75c
Glass	1.5	0.67c
Diamond	2.4	0.42c
BE condensate	18,000,000	38 mph!

	1.3600000	
Acrylic glass	1.4910000	
Actinolite	1.6180000	
Agalmatolite	1.5500000	
Agate	1.5485000	
Agate - Moss	1.5400000	
Air	1.0002926	
Alcohol	1.3290000	

Dispersion and Colors

- White light - Mixture of colors in sunlight - Separated with a prism Dispersion - Index of refraction varies with wavelength
 Different wavelengths refract at different angles Violet refracted most (blue sky) Red refracted least (red sunsets)
 Example: rainbows
 Wavelength/frequency related

The Human Eye

- Uses convex lens with muscularly controlled curvature to ٠ change focal distance
- Nearsightedness (myopia) - images form in front of retina
- Farsightedness (hyperopia) images form behind retina ٠
- Correction - lenses (glasses, contacts) used to move images onto retina

The Nature of Light Wave-like Behavior

Diffraction

- Bending of waves around objects
- Shadows do not have sharp edges

The Nature of Light Wave-like Behavior

Interference

- Young's two slit
 experiment
- Interference pattern series of bright and dark zones
- Explanation constructive and destructive interference

Wave-like Behavior -		
Polarization		
	 Alignment of electromagnetic fields 	
	 Unpolarized light - mixture of randomly oriented fields 	
	 Polarized light - electric fields oscillating on one 	
	direction	

Wave-like Behavior -Polarization

- Unpolarized light mixture of randomly oriented fields
- Polarized light electric fields oscillating on one direction
- Two filters passage depends on alignment
- Reflection polarization

Particle-like Behavior Quantization of energy Energy comes in discrete Photon frequency quanta oton energy · Used by Planck to explain E = hfblackbody radiation observations Planck's constant • Particles of light = photons $h = 6.63 \times 10^{-34} J \cdot s$ Detected in digital cameras ٠ with CCDs (charge-coupled devices)

Example 2 (Parallel Exercise Group B #14) 2) What is the energy of a photon of ultraviolet radiation with a wavelength of 3.00X10⁻⁷ m?

Photoelectric Effect

- Ejection of electrons from metal surfaces by photon impact
 Minimum photon energy
- (frequency) needed to overcome electron binding PE
- Additional photon energy goes into KE of ejected electron
- Intensity of light related to number of photons, not energy
- Application: photocells

Special Relativity

- Concerned with events as observed from different points of view
- · Based upon Einstein's principles of
 - Consistent law principle
 - Constancy of speed principle

Special Relativity

Shows that

- measurements of length, time, and mass are different in different moving reference frames
- The length of an object is shorter when moving.
- Moving clocks run more slowly.
- Moving objects have increased mass.

General Theory of Relativity

- Also called Einstein's geometric theory of gravity
- Gravitational interaction is the result of the interaction between mass and the geometry of space
- 4th dimensional "spacetime" structure