Chapter 18 The Bizarre Stellar Graveyard

18.1 White Dwarfs

Our goals for learning

- What is a white dwarf?
- What can happen to a white dwarf in a close binary system?

White Dwarfs

- White dwarfs are the remaining cores of dead stars
- Electron degeneracy pressure supports them against gravity

Size of a White Dwarf White dwarfs with same mass as Sun are about same size as Earth Higher mass white dwarfs are smaller The White Dwarf Limit • Quantum mechanics says that electrons must move faster as they are squeezed into a very small space - As a white dwarf's mass approaches $1.4M_{\rm Sun}$, its electrons must move at nearly the speed of light • Because nothing can move faster than light, a white dwarf cannot be more massive than $1.4M_{\rm Sun}$, the white dwarf limit (or Chandrasekhar limit) Star that started with less mass gains mass from its companion Eventually the mass-losing star will become a white dwarf What happens next?

Accretion Disks

- Mass falling toward a white dwarf from its close binary companion has some angular momentum
- The matter therefore orbits the white dwarf in an *accretion disk*

Accretion Disks

 Friction between orbiting rings of matter in the disk transfers angular momentum outward and causes the disk to heat up and glow

Nova

- The temperature of accreted matter eventually becomes hot enough for hydrogen fusion
- Fusion begins suddenly and explosively, causing a *nova*

Nova	
The nova star system temporarily appears much brighter	
The explosion drives accreted matter out into space COM Pursua Education Do, publishing as Pauron Addison-Vintary	
Two Types of Supernova Massive star supernova:	
Iron core of massive star reaches white dwarf limit and collapses into a neutron star, causing explosion	
White dwarf supernova:	
Carbon fusion suddenly begins as white dwarf in close binary system reaches white dwarf limit, causing total explosion	
One way to tell supernova types apart is with a <i>light</i> curve showing how luminosity changes with time	

Nova or Supernova?

- Supernovae are MUCH MUCH more luminous!!! (about 10 thousand times)
- Nova: H to He fusion of a layer of accreted matter, white dwarf left intact
- Supernova: complete explosion of white dwarf, nothing left behind

Supernova Type: Massive Star or White Dwarf?

- Light curves differ
- Spectra differ (exploding white dwarfs don't have hydrogen absorption lines)

What have we learned?

- What is a white dwarf?
 - A white dwarf is the inert core of a dead star
 - Electron degeneracy pressure balances the inward pull of gravity
- What can happen to a white dwarf in a close binary system?
 - Matter from its close binary companion can fall onto the white dwarf through an accretion disk
 - Accretion of matter can lead to novae and white dwarf supernovae

 18.2 Neutron Stars Our goals for learning What is a neutron star? How were neutron stars discovered? What can happen to a neutron star in a close binary system? 	
A neutron star is the ball of neutrons left behind by a massive-star	
Degeneracy pressure of neutrons supports a neutron star against gravity	
Electron degeneracy pressure goes away because electrons combine with protons, making neutrons and neutrinos Neutrons collapse to the center, forming a neutron star	

Discovery of Neutron Stars • Using a radio telescope in 1967, Jocelyn Bell noticed very regular pulses of radio emission coming from a single part of the sky • The pulses were coming from a spinning neutron star—a pulsar **Pulsars** • A pulsar is a neutron star that beams radiation along a magnetic axis that is not aligned with the rotation axis **Pulsars** • The radiation beams sweep through space like lighthouse beams as the neutron star rotates

Why Pulsars must be Neutron Stars Circumference of NS = 2π (radius) ~ 60 km Spin Rate of Fast Pulsars ~ 1000 cycles per second Surface Rotation Velocity $\sim 60,000$ km/s $\sim 20\%$ speed of light \sim escape velocity from NS Anything else would be torn to pieces!	
Pulsars spin fast because core's spin speeds up as it collapses into neutron star Conservation of angular momentum	
Matter falling toward a neutron star forms an accretion disk, just as in a white-dwarf binary	

Accreting matter adds angular momentum to a neutron star, increasing its spin	
X-Ray Bursts • Matter accreting onto a neutron star	
can eventually become hot enough for helium fusion	
The sudden onset of fusion produces a burst of X-rays	
What have we learned?	
 What is a neutron star? A ball of neutrons left over from a massive star supernova and supported by neutron degeneracy pressure 	
How were neutron stars discovered? Beams of radiation from a rotating neutron star sweep through space like lighthouse beams, making them appear to pulse Observations of these pulses were the first evidence for neutron stars 2000 Transp Marketon Des publishing a Transp Addition. Watery	

What have we learned? • What can happen to a neutron star in a close binary system? The accretion disk around a neutron star gets hot enough to produce X-rays, making the system an X-ray binary - Sudden fusion events periodically occur on a the surface of an accreting neutron star, producing X-ray bursts 18.3 Black Holes: Gravity's Ultimate Victory Our goals for learning • What is a black hole? • What would it be like to visit a black hole? • Do black holes really exist?

A *black hole* is an object whose gravity is so powerful that not even light can escape it.

Light would not be able to escape Earth's surface if you could shrink it to < 1 cm	
 "Surface" of a Black Hole The "surface" of a black hole is the radius at which the escape velocity equals the speed of light. This spherical surface is known as the <i>event horizon</i>. The radius of the event horizon is known as the <i>Schwarzschild radius</i>. 	
Neutron star	
The event horizon of a 3 $M_{\rm Sun}$ black hole is also about as big as a small city	

Event horizon is larger for black holes of larger mass	
	1
A black hole's mass strongly warps space and time in vicinity of event horizon	
Interactive Figure	
No Escape	
 Nothing can escape from within the event horizon because nothing can go faster than light. 	
No escape means there is no more contact with	
something that falls in. It increases the hole mass, changes the spin or charge, but otherwise	
loses its identity.	
	

Neutron Star Limit

- Quantum mechanics says that neutrons in the same place cannot be in the same state
- Neutron degeneracy pressure can no longer support a neutron star against gravity if its mass exceeds about $3 M_{\text{sun}}$
- Some massive star supernovae can make a black hole if enough mass falls onto core

Singularity

- Beyond the neutron star limit, no known force can resist the crush of gravity.
- As far as we know, gravity crushes all the matter into a single point known as a *singularity*.

If the Sun shrank into a black hole, its gravity would be different only near the event horizon

Black holes don't suck!

Tidal forces near the event horizon of a $3 M_{Sun}$ black hole would be lethal to humans Tidal forces would be gentler near a supermassive black hole because its radius is much bigger Black Hole Verification Need to measure mass — Use orbital properties of companion — Measure velocity and distance of orbiting gas It's a black hole if it's not a star and its mass exceeds the neutron star limit ($\sim 3 M_{Sun}$) What have we learned? • What is a black hole? – A black hole is a massive object whose radius is so small that the escape velocity exceeds the speed of light • What would it be like to visit a black hole? - You can orbit a black hole like any other object of the same mass—black holes don't suck! - Near the event horizon time slows down and tidal forces are very strong

What have we learned? • Do black holes really exist? - Some X-ray binaries contain compact objects too massive to be neutron stars—they are almost certainly black holes