LOOK OVER	
Chapter 7	Sections 1-9
Examples	1, 2, 3, 4, 5, 6, 7, 8,
Chapter 8	Sections 1-5, 7, 8
Examples	1, 2, 3, 4, 5, 6, 7, 8

	Topics Covered
1) Work do	ne by a force (General Form)
2) Kinetic F	nergy

- 2) Kinetic Energy
 3) The Work-Energy Theorem
- 4) Power
- 5) Conservative and Non-conservative forces
- 6) Potential Energy7) Conservation Of Mechanical Energy
- 8) Conservation Of Energy

What To Do With	Changing Forces
Since F and m are constant, a must also be constant so we can find the velocity as:	$\vec{v}_1 = \vec{v}_0 + \vec{a}t$
and the position as a function of time is given by: $\vec{r}(t)$ (with r	$= \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$ $\vec{v}_0 = 0 \text{ and } r_1 = r$
But what can we do if the	e force is not constant?

The Work-Energy Theorem
The work done on the object will be equal to the change in
kinetic energy.

$$W = KE_f - KE_i$$

	Why We Need Work
The W sweep	ork-Energy theorem is the starting point for a ing generalization in physics.
N c t	We will compute separately the work done by certain types of forces and give a special name to he work done by each type.
1.47.47	This leads to the concepts of different types of energy and the principle of conservation of energy which as we will see is one of the most

6

Units o	of Power
The units of power are Work units divide by time units.	$\frac{J}{s} = W$ (Watts)

Clown	s Need Physics Too
	It would be nice to calculate how high the balls will travel with out having to apply Newton's Three Laws of Motion

If there is no friction between the ball and the floor then the ball's initial *KE* and its final *KE* will be the same.

Conservative Forces

The force that the spring exerted on the ball <u>Conserved</u> the KE of the ball.

If there is **Friction** between the ball and the floor then the final *KE* will be less then the initial *KE*. So the ball's ability to do work has not been conserved.

So the frictional forces do not conserved the KE of the ball.

If there is no air resistance then the net work done by gravity on the baseball is zero for the round trip (up and back).		Conser	vative	Force	s Again	10
If there is no air resistance then the net work done by gravity on the baseball is zero for the round trip (up and back).						1
If there is no air resistance then the net work done by gravity on the baseball is zero for the round trip (up and back).						
If there is no air resistance then the net work done by gravity on the baseball is zero for the round trip (up and back).						
If there is no air resistance then the net work done by gravity on the baseball is zero for the round trip (up and back).				<u> </u>		
	lf th on t	ere is no air resi he baseball is zei	stance then ro for the ro	i the net wo ound trip (u	ork done by grav p and back).	vity

Conservative	Forces - One More Time
	The Work done by a conservative force <u>does not depend on the path</u> , but only on the end points.

Conservative Forces- 3rd and last Definition

A force is <u>Conservative</u> if the work done by it on a particle that moves between two points depends only on these points and not on the path.

A force is <u>Nonconservative</u> if the work done by it on a particle that moves between two points depends on the path taken between those two points.

	Potential Energy
We can now say for this s ΔKE as the c Potential E opposite am	consider the spring and the ball as a system and rstem that if the Kinetic Energy changes by onfiguration of the system changes, then the nergy (PE) must change by an equal but bunt so that the sum of the two changes is zero.
]	$\Delta KE + \Delta PE = 0$
	or
	KE + PE = A Constant

Conservation Of Mechanical Energy
Since E is constant even as the particle moves from position
$$x_0$$
 to position x and the speed changes from V_0 to V we can write:
$$\frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv_0^2 + U(x_0)$$
This is the Law of Conservation of Mechanical Energy for conservative forces.

• Work:	Summary of Chapter 7 and 8 $W = Fd \cos \theta$
•Kinetic e	energy is energy of motion; $KE = \frac{1}{2}mv^2$
 Potentian forces the configuration 	al energy is energy associated with at depend on the position or ation of objects.
• PEgrav =	= mgy elastic PE = $\frac{1}{2}kx^2$
•The net change ir	work done on an object equals the ו its kinetic energy
• If only on the mechanic	conservative forces are acting, cal energy is conserved
• Power i	s the rate at which work is done