PHYS 2212

Look Over Chapter 24 sections 1-7, 9-12 Examples 1, 2, 3, 4, 5, 6, 7

PHYS 1112

Read Over Chapter 17 sections 1-5 Examples 2, 3, 4, 5, 6

Things to Know

1) How to Calculate the Electrical Potential Energy.

- 2) How to find the Work done due to Electrical Potential Energy.
- 3) The difference between Electrical Potential Energy and the Electric Potential.
- 4) What a Volt is.
- 5) The relationship between Equipotential Surfaces and the Electric field.

2

eV
A convenient unit for energy in atomic and nuclear physics is the Electron-Volt (eV). One electron Volt is the energy equal to the work required to move a single electron or proton though a potential difference of exactly one Volt.
$$IeV = e(IV) = (1.6 \times 10^{-19}C)(I\frac{J}{C}) = 1.6 \times 10^{-19}J$$

	Equipotential Surfaces
Gravity	acts only in a direction perpendicular to a contour line.

Equipotential Surfaces Adjacent points that have the same electric potential form Equipotentia al Surface No net work W is done on a charged particle by an electric field when the particle moves between to points *i* and *f* on the same equipotenial surface.

If we look at the work done on a charge q_0 we see that the work done in moving the charge a small distance Δs is given by: $\Delta W = \vec{F} \bullet \Delta \vec{s} \text{ or}$ $\Delta W = q\vec{E} \bullet \Delta \vec{s}$	Calculating The P	otential from E
	If we look at the work done on a charge q_0 we see that the work done in moving the charge a small distance Δs is given by:	$\Delta W = \vec{F} \bullet \Delta \vec{s} \text{ or}$ $\Delta W = q\vec{E} \bullet \Delta \vec{s}$

Potential of a Charged Isolated Conductor

An excess charge placed on an isolated conductor will distribute itself on the surface of that conductor so that all points of the conductor --whether on the surface or inside-come to the same potential.

Example 5

 $r = 5.40 \times 10^{6} \text{ m/s}$ \Rightarrow $r \rightarrow$ $r \rightarrow$ r

4) A small metal sphere, carrying a net positive charge is held fixed on an insulating stand. An alpha particle is projected along a radial path toward the sphere. How close to the sphere does the particle get?

8