1

The Human Body: An Orientation: Part A

Overview of Anatomy and Physiology
• Anatomy: The study of structure
• Subdivisions:
 • Gross or macroscopic (e.g., regional, surface, and systemic anatomy)
 • Microscopic (e.g., cytology and histology)
 • Developmental (e.g., embryology)

Overview of Anatomy and Physiology
• Essential tools for the study of anatomy:
 • Mastery of anatomical terminology
 • Observation
 • Manipulation
 • Palpation
 • Auscultation

Overview of Anatomy and Physiology
• Physiology: The study of function at many levels
 • Subdivisions are based on organ systems (e.g., renal or cardiovascular physiology)

Overview of Anatomy and Physiology
• Essential tools for the study of physiology:
 • Ability to focus at many levels (from systemic to cellular and molecular)
 • Basic physical principles (e.g., electrical currents, pressure, and movement)
 • Basic chemical principles

Principle of Complementarity
• Anatomy and physiology are inseparable.
 • Function always reflects structure
 • What a structure can do depends on its specific form

Levels of Structural Organization
• Chemical: atoms and molecules (Chapter 2)
• Cellular: cells and their organelles (Chapter 3)
• Tissue: groups of similar cells (Chapter 4)
• Organ: contains two or more types of tissues
• Organ system: organs that work closely together
• Organismal: all organ systems

Overview of Organ Systems
• Note major organs and functions of the 11 organ systems (Fig. 1.3)

Organ Systems Interrelationships
• All cells depend on organ systems to meet their survival needs
• Organ systems work cooperatively to perform necessary life functions

Necessary Life Functions
1. Maintaining boundaries between internal and external environments
 • Plasma membranes
 • Skin
2. Movement (contractility)
 • Of body parts (skeletal muscle)
 • Of substances (cardiac and smooth muscle)

Necessary Life Functions
3. Responsiveness: The ability to sense and respond to stimuli
 • Withdrawal reflex
 • Control of breathing rate
4. Digestion
 • Breakdown of ingested foodstuffs
 • Absorption of simple molecules into blood

Necessary Life Functions
5. Metabolism: All chemical reactions that occur in body cells
 • Catabolism and anabolism
6. Excretion: The removal of wastes from metabolism and digestion
 • Urea, carbon dioxide, feces
Necessary Life Functions
7. Reproduction
 • Cellular division for growth or repair
 • Production of offspring
8. Growth: Increase in size of a body part or of organism

Survival Needs
1. Nutrients
 • Chemicals for energy and cell building
 • Carbohydrates, fats, proteins, minerals, vitamins
2. Oxygen
 • Essential for energy release (ATP production)

Survival Needs
3. Water
 • Most abundant chemical in the body
 • Site of chemical reactions
4. Normal body temperature
 • Affects rate of chemical reactions
5. Appropriate atmospheric pressure
 • For adequate breathing and gas exchange in the lungs

Homeostasis
• Maintenance of a relatively stable internal environment despite continuous outside changes
• A dynamic state of equilibrium

Homeostatic Control Mechanisms
• Involve continuous monitoring and regulation of many factors (variables)
• Nervous and endocrine systems accomplish the communication via nerve impulses and hormones

Components of a Control Mechanism
1. Receptor (sensor)
 • Monitors the environment
 • Responds to stimuli (changes in controlled variables)
2. Control center
 • Determines the set point at which the variable is maintained
 • Receives input from receptor
• Determines appropriate response

Components of a Control Mechanism

3. Effector
 • Receives output from control center
 • Provides the means to respond
 • Response acts to reduce or enhance the stimulus (feedback)

Negative Feedback
 • The response reduces or shuts off the original stimulus
 • Examples:
 • Regulation of body temperature (a nervous mechanism)
 • Regulation of blood volume by ADH (an endocrine mechanism)

Negative Feedback: Regulation of Blood Volume by ADH
 • Receptors sense decreased blood volume
 • Control center in hypothalamus stimulates pituitary gland to release antidiuretic hormone (ADH)
 • ADH causes the kidneys (effectors) to return more water to the blood

Positive Feedback
 • The response enhances or exaggerates the original stimulus
 • May exhibit a cascade or amplifying effect
 • Usually controls infrequent events e.g.:
 • Enhancement of labor contractions by oxytocin (Chapter 28)
 • Platelet plug formation and blood clotting

Homeostatic Imbalance
 • Disturbance of homeostasis
 • Increases risk of disease
 • Contributes to changes associated with aging
 • May allow destructive positive feedback mechanisms to take over (e.g., heart failure)