Chemistry Comes Alive: Part B

Classes of Compounds

• Inorganic compounds
 • Water, salts, and many acids and bases
 • Do not contain carbon
• Organic compounds
 • Carbohydrates, fats, proteins, and nucleic acids
 • Contain carbon, usually large, and are covalently bonded

Water

• 60%–80% of the volume of living cells
• Most important inorganic compound in living organisms because of its properties

Properties of Water

• High heat capacity
 • Absorbs and releases heat with little temperature change
 • Prevents sudden changes in temperature
• High heat of vaporization
 • Evaporation requires large amounts of heat
 • Useful cooling mechanism

Properties of Water

• Polar solvent properties
 • Dissolves and dissociates ionic substances
 • Forms hydration layers around large charged molecules, e.g., proteins (colloid formation)
 • Body’s major transport medium

Properties of Water

• Reactivity
 • A necessary part of hydrolysis and dehydration synthesis reactions
• Cushioning
 • Protects certain organs from physical trauma, e.g., cerebrospinal
Salts
• Ionic compounds that dissociate in water
• Contain cations other than H\(^+\) and anions other than OH\(^-\)
• Ions (electrolytes) conduct electrical currents in solution
• Ions play specialized roles in body functions (e.g., sodium, potassium, calcium, and iron)

Acids and Bases
• Both are electrolytes
 • Acids are proton (hydrogen ion) donors (release H\(^+\) in solution)
 • HCl → H\(^+\) + Cl\(^-\)

Acids and Bases
• Bases are proton acceptors (take up H\(^+\) from solution)
 • NaOH → Na\(^+\) + OH\(^-\)
 • OH\(^-\) accepts an available proton (H\(^+\))
 • OH\(^-\) + H\(^+\) → H\(_2\)O
 • Bicarbonate ion (HCO\(_3\)\(^-\)) and ammonia (NH\(_3\)) are important bases in the body

Acid-Base Concentration
• Acid solutions contain [H\(^+\)]
 • As [H\(^+\)] increases, acidity increases
• Alkaline solutions contain bases (e.g., OH\(^-\))
 • As [H\(^+\)] decreases (or as [OH\(^-\)] increases), alkalinity increases

pH: Acid-Base Concentration
• pH = the negative logarithm of [H\(^+\)] in moles per liter
• Neutral solutions:
 • Pure water is pH neutral (contains equal numbers of H\(^+\) and OH\(^-\))
 • pH of pure water = pH 7: [H\(^+\)] = 10 \(^{-7}\) M
 • All neutral solutions are pH 7

pH: Acid-Base Concentration
• Acidic solutions
 • ↑ [H\(^+\)], ↓ pH
 • Acidic pH: 0–6.99
 • pH scale is logarithmic: a pH 5 solution has 10 times more H\(^+\)
than a pH 6 solution
• Alkaline solutions
 • ↓ [H⁺], ↑ pH
 • Alkaline (basic) pH: 7.01–14

Acid-Base Homeostasis
• pH change interferes with cell function and may damage living tissue
• Slight change in pH can be fatal
• pH is regulated by kidneys, lungs, and buffers

Buffers
• Mixture of compounds that resist pH changes
• Convert strong (completely dissociated) acids or bases into weak (slightly dissociated) ones
 • Carbonic acid-bicarbonate system

Organic Compounds
• Contain carbon (except CO₂ and CO, which are inorganic)
• Unique to living systems
• Include carbohydrates, lipids, proteins, and nucleic acids

Organic Compounds
• Many are polymers—chains of similar units (monomers or building blocks)
 • Synthesized by dehydration synthesis
 • Broken down by hydrolysis reactions

Carbohydrates
• Sugars and starches
• Contain C, H, and O [(CH₂O)ₙ]
• Three classes
 • Monosaccharides
 • Disaccharides
 • Polysaccharides

Carbohydrates
• Functions
 • Major source of cellular fuel (e.g., glucose)
 • Structural molecules (e.g., ribose sugar in RNA)
Monosaccharides
- Simple sugars containing three to seven C atoms
- \((\text{CH}_2\text{O})_n\)

Disaccharides
- Double sugars
- Too large to pass through cell membranes

Polysaccharides
- Polymers of simple sugars, e.g., starch and glycogen
- Not very soluble

Lipids
- Contain C, H, O (less than in carbohydrates), and sometimes P
- Insoluble in water
- Main types:
 - Neutral fats or triglycerides
 - Phospholipids
 - Steroids
 - Eicosanoids

Triglycerides
- Neutral fats—solid fats and liquid oils
- Composed of three fatty acids bonded to a glycerol molecule
- Main functions
 - Energy storage
 - Insulation
 - Protection

Saturation of Fatty Acids
- Saturated fatty acids
 - Single bonds between C atoms; maximum number of H
 - Solid animal fats, e.g., butter
- Unsaturated fatty acids
 - One or more double bonds between C atoms
 - Reduced number of H atoms
 - Plant oils, e.g., olive oil

Phospholipids
- Modified triglycerides:
- Glycerol + two fatty acids and a phosphorus (P)-containing group
- “Head” and “tail” regions have different properties
- Important in cell membrane structure

Steroids
- Steroids—interlocking four-ring structure
- Cholesterol, vitamin D, steroid hormones, and bile salts

Eicosanoids
- Many different ones
- Derived from a fatty acid (arachidonic acid) in cell membranes
- Prostaglandins

Other Lipids in the Body
- Other fat-soluble vitamins
 - Vitamins A, E, and K
- Lipoproteins
 - Transport fats in the blood

Proteins
- Polymers of amino acids (20 types)
 - Joined by peptide bonds
- Contain C, H, O, N, and sometimes S and P

Structural Levels of Proteins

Fibrous and Globular Proteins
- Fibrous (structural) proteins
 - Strandlike, water insoluble, and stable
 - Examples: keratin, elastin, collagen, and certain contractile fibers

Fibrous and Globular Proteins
- Globular (functional) proteins
 - Compact, spherical, water-soluble and sensitive to environmental changes
 - Specific functional regions (active sites)
 - Examples: antibodies, hormones, molecular chaperones, and enzymes

Protein Denaturation
• Shape change and disruption of active sites due to environmental changes (e.g., decreased pH or increased temperature)
• Reversible in most cases, if normal conditions are restored
• Irreversible if extreme changes damage the structure beyond repair (e.g., cooking an egg)

Molecular Chaperones (Chaperonins)
• Ensure quick and accurate folding and association of proteins
• Assist translocation of proteins and ions across membranes
• Promote breakdown of damaged or denatured proteins
• Help trigger the immune response
• Produced in response to stressful stimuli, e.g., O₂ deprivation

Enzymes
• Biological catalysts
 • Lower the activation energy, increase the speed of a reaction (millions of reactions per minute!)

Characteristics of Enzymes
• Often named for the reaction they catalyze; usually end in -ase (e.g., hydrolases, oxidases)
• Some functional enzymes (holoenzymes) consist of:
 • Apoenzyme (protein)
 • Cofactor (metal ion) or coenzyme (a vitamin)

Summary of Enzyme Action

Nucleic Acids
• DNA and RNA
 • Largest molecules in the body
 • Contain C, O, H, N, and P
 • Building block = nucleotide, composed of N-containing base, a pentose sugar, and a phosphate group

Deoxyribonucleic Acid (DNA)
• Four bases:
 • adenine (A), guanine (G), cytosine (C), and thymine (T)
• Double-stranded helical molecule in the cell nucleus
- Provides instructions for protein synthesis
- Replicates before cell division, ensuring genetic continuity

Ribonucleic Acid (RNA)
- Four bases:
 - adenine (A), guanine (G), cytosine (C), and uracil (U)
- Single-stranded molecule mostly active outside the nucleus
- Three varieties of RNA carry out the DNA orders for protein synthesis
 - messenger RNA, transfer RNA, and ribosomal RNA

Adenosine Triphosphate (ATP)
- Adenine-containing RNA nucleotide with two additional phosphate groups

Function of ATP
- Phosphorylation:
 - Terminal phosphates are enzymatically transferred to and energize other molecules
 - Such “primed” molecules perform cellular work (life processes) using the phosphate bond energy