Bones and Skeletal Tissues: Part B

Bone Development
- Osteogenesis (ossification)—bone tissue formation
- Stages
 - Bone formation—begins in the 2nd month of development
 - Postnatal bone growth—until early adulthood
 - Bone remodeling and repair—lifelong

Two Types of Ossification
1. Intramembranous ossification
 - Membrane bone develops from fibrous membrane
 - Forms flat bones, e.g. clavicles and cranial bones
2. Endochondral ossification
 - Cartilage (endochondral) bone forms by replacing hyaline cartilage
 - Forms most of the rest of the skeleton

Endochondral Ossification
- Uses hyaline cartilage models
- Requires breakdown of hyaline cartilage prior to ossification

Postnatal Bone Growth
- Interstitial growth:
 - ↑ length of long bones
- Appositional growth:
 - ↑ thickness and remodeling of all bones by osteoblasts and osteoclasts on bone surfaces

Growth in Length of Long Bones
- Epiphyseal plate cartilage organizes into four important functional zones:
 - Proliferation (growth)
 - Hypertrophic
 - Calcification
 - Ossification (osteogenic)
Hormonal Regulation of Bone Growth
• Growth hormone stimulates epiphyseal plate activity
• Thyroid hormone modulates activity of growth hormone
• Testosterone and estrogens (at puberty)
 • Promote adolescent growth spurts
 • End growth by inducing epiphyseal plate closure

Bone Deposit
• Occurs where bone is injured or added strength is needed
• Requires a diet rich in protein; vitamins C, D, and A; calcium; phosphorus; magnesium; and manganese

Bone Deposit
• Sites of new matrix deposit are revealed by the
 • Osteoid seam
 • Unmineralized band of matrix
 • Calcification front
 • The abrupt transition zone between the osteoid seam and the older mineralized bone

Bone Resorption
• Osteoclasts secrete
 • Lysosomal enzymes (digest organic matrix)
 • Acids (convert calcium salts into soluble forms)
• Dissolved matrix is transcytosed across osteoclast, enters interstitial fluid and then blood

Control of Remodeling
• What controls continual remodeling of bone?
 • Hormonal mechanisms that maintain calcium homeostasis in the blood
 • Mechanical and gravitational forces

Hormonal Control of Blood Ca$^{2+}$
• Calcium is necessary for
 • Transmission of nerve impulses
 • Muscle contraction
 • Blood coagulation
 • Secretion by glands and nerve cells
• Cell division

Hormonal Control of Blood Ca\(^{2+}\)
- Primarily controlled by parathyroid hormone (PTH)
 - Blood Ca\(^{2+}\) levels
 - Parathyroid glands release PTH
 - PTH stimulates osteoclasts to degrade bone matrix and release Ca\(^{2+}\)
 - Blood Ca\(^{2+}\) levels

Hormonal Control of Blood Ca\(^{2+}\)
- May be affected to a lesser extent by calcitonin
 - Blood Ca\(^{2+}\) levels
 - Parafollicular cells of thyroid release calcitonin
 - Osteoblasts deposit calcium salts
 - Blood Ca\(^{2+}\) levels
- Leptin has also been shown to influence bone density by inhibiting osteoblasts

Response to Mechanical Stress
- Wolff’s law: A bone grows or remodels in response to forces or demands placed upon it
- Observations supporting Wolff’s law:
 - Handedness (right or left handed) results in bone of one upper limb being thicker and stronger
 - Curved bones are thickest where they are most likely to buckle
 - Trabeculae form along lines of stress
 - Large, bony projections occur where heavy, active muscles attach

Classification of Bone Fractures
- Bone fractures may be classified by four “either/or” classifications:
 1. Position of bone ends after fracture:
 - Nondisplaced—ends retain normal position
 - Displaced—ends out of normal alignment
 2. Completeness of the break
 - Complete—broken all the way through
 - Incomplete—not broken all the way through

Classification of Bone Fractures
3. Orientation of the break to the long axis of the bone:
 • Linear—parallel to long axis of the bone
 • Transverse—perpendicular to long axis of the bone
4. Whether or not the bone ends penetrate the skin:
 • Compound (open)—bone ends penetrate the skin
 • Simple (closed)—bone ends do not penetrate the skin

Common Types of Fractures
• All fractures can be described in terms of
 • Location
 • External appearance
 • Nature of the break

Stages in the Healing of a Bone Fracture
1. Hematoma forms
 • Torn blood vessels hemorrhage
 • Clot (hematoma) forms
 • Site becomes swollen, painful, and inflamed

Stages in the Healing of a Bone Fracture
2. Fibrocartilaginous callus forms
 • Phagocytic cells clear debris
 • Osteoblasts begin forming spongy bone within 1 week
 • Fibroblasts secrete collagen fibers to connect bone ends
 • Mass of repair tissue now called fibrocartilaginous callus

Stages in the Healing of a Bone Fracture
3. Bony callus formation
 • New trabeculae form a bony (hard) callus
 • Bony callus formation continues until firm union is formed in ~2 months

Stages in the Healing of a Bone Fracture
4. Bone remodeling
 • In response to mechanical stressors over several months
 • Final structure resembles original

Homeostatic Imbalances
• Osteomalacia and rickets
 • Calcium salts not deposited
 • Rickets (childhood disease) causes bowed legs and other bone
deformities
• Cause: vitamin D deficiency or insufficient dietary calcium

Homeostatic Imbalances
• Osteoporosis
 • Loss of bone mass—bone resorption outpaces deposit
 • Spongy bone of spine and neck of femur become most susceptible to fracture
 • Risk factors
 • Lack of estrogen, calcium or vitamin D; petite body form; immobility; low levels of TSH; diabetes mellitus

Osteoporosis: Treatment and Prevention
• Calcium, vitamin D, and fluoride supplements
• ↑ Weight-bearing exercise throughout life
• Hormone (estrogen) replacement therapy (HRT) slows bone loss
• Some drugs (Fosamax, SERMs, statins) increase bone mineral density

Paget’s Disease
• Excessive and haphazard bone formation and breakdown, usually in spine, pelvis, femur, or skull
• Pagetic bone has very high ratio of spongy to compact bone and reduced mineralization
• Unknown cause (possibly viral)
• Treatment includes calcitonin and biphosphonates

Developmental Aspects of Bones
• Embryonic skeleton ossifies predictably so fetal age easily determined from X rays or sonograms
• At birth, most long bones are well ossified (except epiphyses)

Developmental Aspects of Bones
• Nearly all bones completely ossified by age 25
• Bone mass decreases with age beginning in 4th decade
• Rate of loss determined by genetics and environmental factors
• In old age, bone resorption predominates