Muscles and Muscle Tissue: Part B

Review Principles of Muscle Mechanics

1. Same principles apply to contraction of a single fiber and a whole muscle
2. Contraction produces tension, the force exerted on the load or object to be moved

Review Principles of Muscle Mechanics

3. Contraction does not always shorten a muscle:
 - Isometric contraction: no shortening; muscle tension increases but does not exceed the load
 - Isotonic contraction: muscle shortens because muscle tension exceeds the load

Review Principles of Muscle Mechanics

4. Force and duration of contraction vary in response to stimuli of different frequencies and intensities

Motor Unit: The Nerve-Muscle Functional Unit

- Motor unit = a motor neuron and all (four to several hundred) muscle fibers it supplies

Motor Unit

- Small motor units in muscles that control fine movements (fingers, eyes)
- Large motor units in large weight-bearing muscles (thighs, hips)

Motor Unit

- Muscle fibers from a motor unit are spread throughout the muscle so that a single motor unit causes weak contraction of entire muscle
- Motor units in a muscle usually contract asynchronously; helps prevent fatigue

Muscle Twitch
• Response of a muscle to a single, brief threshold stimulus
• Simplest contraction observable in the lab (recorded as a myogram)

Muscle Twitch
• Three phases of a twitch:
 • Latent period: events of excitation-contraction coupling
 • Period of contraction: cross bridge formation; tension increases
 • Period of relaxation: Ca\(^{2+}\) reentry into the SR; tension declines to zero

Muscle Twitch Comparisons
Different strength and duration of twitches are due to variations in metabolic properties and enzymes between muscles

Graded Muscle Responses
• Variations in the degree of muscle contraction
• Required for proper control of skeletal movement
Responses are graded by:
 1. Changing the frequency of stimulation
 2. Changing the strength of the stimulus

Response to Change in Stimulus Frequency
• A single stimulus results in a single contractile response—a muscle twitch

Response to Change in Stimulus Frequency
• Increase frequency of stimulus (muscle does not have time to completely relax between stimuli)
• Ca\(^{2+}\) release stimulates further contraction \rightarrow temporal (wave) summation
• Further increase in stimulus frequency \rightarrow unfused (incomplete) tetanus

Response to Change in Stimulus Frequency
• If stimuli are given quickly enough, fused (complete) tetany results

Response to Change in Stimulus Strength
• Threshold stimulus: stimulus strength at which the first observable muscle contraction occurs
• Muscle contracts more vigorously as stimulus strength is increased above threshold
• Contraction force is precisely controlled by recruitment (multiple motor unit summation), which brings more and more muscle fibers into action

Response to Change in Stimulus Strength
• Size principle: motor units with larger and larger fibers are recruited as stimulus intensity increases

Muscle Tone
• Constant, slightly contracted state of all muscles
• Due to spinal reflexes that activate groups of motor units alternately in response to input from stretch receptors in muscles
• Keeps muscles firm, healthy, and ready to respond

Isotonic Contractions
• Muscle changes in length and moves the load
• Isotonic contractions are either concentric or eccentric:
 • Concentric contractions—the muscle shortens and does work
 • Eccentric contractions—the muscle contracts as it lengthens

Isometric Contractions
• The load is greater than the tension the muscle is able to develop
• Tension increases to the muscle’s capacity, but the muscle neither shortens nor lengthens

Muscle Metabolism: Energy for Contraction
• ATP is the only source used directly for contractile activities
• Available stores of ATP are depleted in 4–6 seconds

Muscle Metabolism: Energy for Contraction
• ATP is regenerated by:
 • Direct phosphorylation of ADP by creatine phosphate (CP)
 • Anaerobic pathway (glycolysis)
• Aerobic respiration

Anaerobic Pathway
- At 70% of maximum contractile activity:
 - Bulging muscles compress blood vessels
 - Oxygen delivery is impaired
 - Pyruvic acid is converted into lactic acid

Anaerobic Pathway
- Lactic acid:
 - Diffuses into the bloodstream
 - Used as fuel by the liver, kidneys, and heart
 - Converted back into pyruvic acid by the liver

Aerobic Pathway
- Produces 95% of ATP during rest and light to moderate exercise
- Fuels: stored glycogen, then bloodborne glucose, pyruvic acid from glycolysis, and free fatty acids

Muscle Fatigue
- Physiological inability to contract
- Occurs when:
 - Ionic imbalances (K^+, Ca^{2+}, P_i) interfere with E-C coupling
 - Prolonged exercise damages the SR and interferes with Ca^{2+} regulation and release
- Total lack of ATP occurs rarely, during states of continuous contraction, and causes contractures (continuous contractions)

Oxygen Deficit
Extra O_2 needed after exercise for:
- Replenishment of
 - Oxygen reserves
 - Glycogen stores
 - ATP and CP reserves
- Conversion of lactic acid to pyruvic acid, glucose, and glycogen

Heat Production During Muscle Activity
- ~ 40% of the energy released in muscle activity is useful as
work

• Remaining energy (60%) given off as heat
• Dangerous heat levels are prevented by radiation of heat from the skin and sweating