Fundamentals of the Nervous System and Nervous Tissue: Part B

Neuron Function
• Neurons are highly irritable
• Respond to adequate stimulus by generating an action potential (nerve impulse)
• Impulse is always the same regardless of stimulus

Principles of Electricity
• Opposite charges attract each other
• Energy is required to separate opposite charges across a membrane
• Energy is liberated when the charges move toward one another
• If opposite charges are separated, the system has potential energy

Definitions
• Voltage (V): measure of potential energy generated by separated charge
• Potential difference: voltage measured between two points
• Current (I): the flow of electrical charge (ions) between two points

Definitions
• Resistance (R): hindrance to charge flow (provided by the plasma membrane)
• Insulator: substance with high electrical resistance
• Conductor: substance with low electrical resistance

Role of Membrane Ion Channels
• Proteins serve as membrane ion channels
• Two main types of ion channels
 1. Leakage (nongated) channels—always open

Role of Membrane Ion Channels
2. Gated channels (three types):
 • Chemically gated (ligand-gated) channels—open with binding of a specific neurotransmitter
 • Voltage-gated channels—open and close in response to changes in membrane potential
 • Mechanically gated channels—open and close in response to physical deformation of receptors

Gated Channels
• When gated channels are open:
 • Ions diffuse quickly across the membrane along their electrochemical gradients
 • Along chemical concentration gradients from higher concentration to lower concentration
 • Along electrical gradients toward opposite electrical charge
 • Ion flow creates an electrical current and voltage changes across the membrane

Resting Membrane Potential (Vr)
• Potential difference across the membrane of a resting cell
 • Approximately –70 mV in neurons (cytoplasmic side of membrane is negatively charged relative to outside)
• Generated by:
 • Differences in ionic makeup of ICF and ECF
 • Differential permeability of the plasma membrane

Resting Membrane Potential
• Differences in ionic makeup
 • ICF has lower concentration of Na\(^+\) and Cl\(^-\) than ECF
 • ICF has higher concentration of K\(^+\) and negatively charged proteins (A\(^-\)) than ECF

Resting Membrane Potential
• Differential permeability of membrane
 • Impermeable to A\(^-\)
 • Slightly permeable to Na\(^+\) (through leakage channels)
 • 75 times more permeable to K\(^+\) (more leakage channels)
 • Freely permeable to Cl\(^-\)
• Negative interior of the cell is due to much greater diffusion of K^+ out of the cell than Na^+ diffusion into the cell
• Sodium-potassium pump stabilizes the resting membrane potential by maintaining the concentration gradients for Na^+ and K^+

Membrane Potentials That Act as Signals
• Membrane potential changes when:
 • Concentrations of ions across the membrane change
 • Permeability of membrane to ions changes
• Changes in membrane potential are signals used to receive, integrate and send information

Membrane Potentials That Act as Signals
• Two types of signals
 • Graded potentials
 • Incoming short-distance signals
 • Action potentials
 • Long-distance signals of axons

Changes in Membrane Potential
• Depolarization
 • A reduction in membrane potential (toward zero)
 • Inside of the membrane becomes less negative than the resting potential
 • Increases the probability of producing a nerve impulse

Changes in Membrane Potential
• Hyperpolarization
 • An increase in membrane potential (away from zero)
 • Inside of the membrane becomes more negative than the resting potential
 • Reduces the probability of producing a nerve impulse

Graded Potentials
• Short-lived, localized changes in membrane potential
• Depolarizations or hyperpolarizations
• Graded potential spreads as local currents change the membrane potential of adjacent regions
Graded Potentials
• Occur when a stimulus causes gated ion channels to open
 • E.g., receptor potentials, generator potentials, postsynaptic potentials
• Magnitude varies directly (graded) with stimulus strength
• Decrease in magnitude with distance as ions flow and diffuse through leakage channels
• Short-distance signals

Action Potential (AP)
• Brief reversal of membrane potential with a total amplitude of ~100 mV
• Occurs in muscle cells and axons of neurons
• Does not decrease in magnitude over distance
• Principal means of long-distance neural communication

Generation of an Action Potential
• Resting state
 • Only leakage channels for Na⁺ and K⁺ are open
 • All gated Na⁺ and K⁺ channels are closed

Properties of Gated Channels
• Properties of gated channels
 • Each Na⁺ channel has two voltage-sensitive gates
 • Activation gates
 • Closed at rest; open with depolarization
 • Inactivation gates
 • Open at rest; block channel once it is open

Properties of Gated Channels
• Each K⁺ channel has one voltage-sensitive gate
• Closed at rest
• Opens slowly with depolarization

Depolarizing Phase
• Depolarizing local currents open voltage-gated Na⁺ channels
• Na⁺ influx causes more depolarization
• At threshold (~55 to ~50 mV) positive feedback leads to opening of all Na⁺ channels, and a reversal of membrane
polarity to +30mV (spike of action potential)

Repolarizing Phase
- Repolarizing phase
 - Na^+ channel slow inactivation gates close
 - Membrane permeability to Na^+ declines to resting levels
 - Slow voltage-sensitive K^+ gates open
 - K^+ exits the cell and internal negativity is restored

Hyperpolarization
- Hyperpolarization
 - Some K^+ channels remain open, allowing excessive K^+ efflux
 - This causes after-hyperpolarization of the membrane (undershoot)

Role of the Sodium-Potassium Pump
- Repolarization
 - Restores the resting electrical conditions of the neuron
 - Does not restore the resting ionic conditions
 - Ionic redistribution back to resting conditions is restored by the thousands of sodium-potassium pumps

Propagation of an Action Potential
- Na^+ influx causes a patch of the axonal membrane to depolarize
- Local currents occur
- Na^+ channels toward the point of origin are inactivated and not affected by the local currents

Propagation of an Action Potential
- Local currents affect adjacent areas in the forward direction
- Depolarization opens voltage-gated channels and triggers an AP
- Repolarization wave follows the depolarization wave
- (Fig. 11.12 shows the propagation process in unmyelinated axons.)

Threshold
- At threshold:
 - Membrane is depolarized by 15 to 20 mV
• Na\(^+\) permeability increases
• Na influx exceeds K\(^+\) efflux
• The positive feedback cycle begins

Threshold
- Subthreshold stimulus—weak local depolarization that does not reach threshold
- Threshold stimulus—strong enough to push the membrane potential toward and beyond threshold
- AP is an all-or-none phenomenon—action potentials either happen completely, or not at all

Coding for Stimulus Intensity
- All action potentials are alike and are independent of stimulus intensity
 - How does the CNS tell the difference between a weak stimulus and a strong one?
- Strong stimuli can generate action potentials more often than weaker stimuli
- The CNS determines stimulus intensity by the frequency of impulses

Absolute Refractory Period
- Time from the opening of the Na\(^+\) channels until the resetting of the channels
- Ensures that each AP is an all-or-none event
- Enforces one-way transmission of nerve impulses

Relative Refractory Period
- Follows the absolute refractory period
 - Most Na\(^+\) channels have returned to their resting state
 - Some K\(^+\) channels are still open
 - Repolarization is occurring
- Threshold for AP generation is elevated
- Exceptionally strong stimulus may generate an AP

Conduction Velocity
- Conduction velocities of neurons vary widely
- Effect of axon diameter
• Larger diameter fibers have less resistance to local current flow and have faster impulse conduction
• Effect of myelination
 • Continuous conduction in unmyelinated axons is slower than saltatory conduction in myelinated axons

Conduction Velocity
• Effects of myelination
 • Myelin sheaths insulate and prevent leakage of charge
 • Saltatory conduction in myelinated axons is about 30 times faster
 • Voltage-gated Na⁺ channels are located at the nodes
 • APs appear to jump rapidly from node to node

Multiple Sclerosis (MS)
• An autoimmune disease that mainly affects young adults
• Symptoms: visual disturbances, weakness, loss of muscular control, speech disturbances, and urinary incontinence
• Myelin sheaths in the CNS become nonfunctional scleroses
• Shunting and short-circuiting of nerve impulses occurs
• Impulse conduction slows and eventually ceases

Multiple Sclerosis: Treatment
• Some immune system–modifying drugs, including interferons and Copazone:
 • Hold symptoms at bay
 • Reduce complications
 • Reduce disability

Nerve Fiber Classification
• Nerve fibers are classified according to:
 • Diameter
 • Degree of myelination
 • Speed of conduction

Nerve Fiber Classification
• Group A fibers
 • Large diameter, myelinated somatic sensory and motor fibers
• Group B fibers
 • Intermediate diameter, lightly myelinated ANS fibers
• Group C fibers
 • Smallest diameter, unmyelinated ANS fibers