MATH 1111 PRACTICE TEST 4 FALL 2009

- 1. Write in exponential form: $\ln 7 = 1.9459...$
- 2. Write in logarithmic form: $64^{\frac{5}{6}} = 32$
- 3. Write in logarithmic form: $e^{2.4} = 11.02317...$
- 4. Without using a calculator evaluate $f(x) = \log_2 x$ for x = 32
- 5. Use a calculator to evaluate $\log_{10} 45$. Round your answer to two decimal places.
- 6. Solve for *x*: $\log_7 7^3 = x$
- 7. Use a calculator to evaluate $\log_5 36$. Round your answer to four decimal places.
- 8. Rewrite ln 36 in terms of ln 3 and ln 4
- 9. Approximate $\log_b 18$ given that $\log_b 2 = .3869$ and $\log_b 3 = .6131$
- 10. Use the properties of logarithms to rewrite $\log \frac{xy}{z^2}$ as sum, difference and/or constant multiple of logarithms.
- 11. Use the properties of logarithms to rewrite $\log \frac{x}{\sqrt{x^2+1}}$ as sum, difference and/or constant multiple of logarithms.
- 12. Condense $2 \ln x + \ln(x+3)$ to the logarithm of a single quantity
- 13. Solve $5(2^x) = 215$
- 14. Solve $\log_x 16 = 2$
- 15. Solve $2^{4x} = 300$. Find an exact solution and then evaluate the solution correct to three decimal places.
- 16. Solve $5(2^{(x-1)})+14 = 286$. Find an exact solution and then evaluate the solution correct to three decimal places.
- 17. Solve $\log_5 x + \log_5(x-4) = 1$
- 18. The number of bacteria in a culture after t hours is modeled by $N = 300e^{kt}$. After 3 hours there are 2000 bacteria.
 - (a) Find the value of k correct to four decimal places.
 - (b) Predict the number of bacteria present after 7 hours.
- 19. A piece of ancient wood was found to contain 22% of the amount of carbon-14 found in living tissue. How old is the piece of wood? The half life of carbon-14 is 5715 years.

20. The number of people infected by a certain disease on a college campus *t* days after its outbreak is modeled by $N = \frac{1250}{1+49e^{-0.3t}}$. Use the model to predict when 800 people will have been infected.